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1. Overview 
 
March Madness is a NCAA Division I Basketball 
tournament that was founded in 1939 and has been 
played annually since. The tournament 
traditionally runs from the middle of March to the 
end of April and features the top 68 teams from 
around the country. 
 
Filling out a March Madness bracket has been 
somewhat of an American tradition, with a history 
of high offers for anyone who can fill out a perfect 
bracket. In 2012, Fox Sports offered $1 million to 
anyone who could do it, and for this upcoming 
season, Warren Buffett offered $1 billion. Sadly, 
there has been no documented case of a perfect 
bracket in the history of the tournament. 
 
2.  Project Goal 
Our goal for this project is to accurately predict a 
March Madness bracket for the upcoming 2014 
tournament. We will use a number of machine 
learning classifier models and attempt to predict 
the winning teams by identifying the 
characteristics that determine a team’s success in 
the tournament. 
 
To construct our bracket, we will ask the following 
questions in our experiments: 

• Which are the most important statistics 
about a team that determine its likelihood to 
win a game? 

• Which classifiers will give us a model with 
stronger performance - decision tree, logistic 
regression, or another classifier? 

• How accurately can we predict the outcome 
of a game given each team’s season 
statistics? Is it as least better than chance 
(50%)?  

 
 
 

 
3.  Data 
Working with sports data is both a blessing and a 
curse - there are a countless number of websites 
available that provide data but it is not always 
provided in a structured format that fits the user’s 
specific needs. We surveyed a number of available 
sports data sites but we ultimately opted for 
Statsheet because the data was provided in a 
relatively structured format that made it 
straightforward to scrape.  
 
Our dataset consists of information from 
Statsheet’s NCAAB (http://statsheet.com/mcb) for 
the 2012-2013 season. The set contains all 351 
NCAAB D1 teams, their conference schedule 
games (a total of 3207 games), and their season 
long statistics (54 for each team). The team statistics 
are a combination of binary, continuous and 
discrete variables that we are using as a feature set 
to represent each individual team. A sample of the 
types of features that we collected includes, but is 
not limited to: winning pct, possessions, floor pct, 
steals, turnovers, blocks, and fouls. 
 
4.  Approach 
In order to conduct our experiments, we needed to 
create instance representing the games that 
occurred from the data that we collected for the 
2012-2013 season.  
 
4.1 Creating Training Instances 
To create an instance, we looked at our game data, 
which was formatted in the following format: 

• home team, away team, outcome for the 
home game  

•  
Using this information, we queried our data to find 
the season statistics for each team, giving us a set of 
numeric values describing each team. Next in order 
to model the actual game, we took the difference of 



the stats between the respective teams (home team 
stats - away team stats) and appended the outcome 
of the game to it. This gave us a numerical 
representation of a game that we could use as a 
training example to feed into a classifier model.  
 

 
Figure 1. Outline of how we constructed our training 
examples (not all of our features are included in this 

diagram). 
 

Our rationale behind modeling a game in this 
format was because it was a reasonable (and 
simple) way to represent a matchup between two 
teams - it is the difference in team skill (which we 
are representing as their season statistics) that 
ultimately decides which team wins in a basketball 
game. Intuitively, modeling a game in this way 
makes sense - a team that has a consistently higher 
average points per game is more likely to defeat a 
team that has a much lower average points per 
game. 
 
4.2 Features 
 
In Appendix A, we’ve included the full list of 
features. In this list, one can see that there are many 
repetitive statistics. For example, one can calculate 
the 3-pt percentage if the amount of 3-pt shots 
taken and 3-pt shots made are known. In this list of 
features, all 3 statistics are known, so we removed 
the 3-pt shots made. This occurs for many other 
statistics for field goal shooting, free throw 
shootings, and more. 
 
In addition, we did try to “prune” our model by 
removing features and seeing if it increased the 
accuracy. However, we could not find a single 
feature that actually increased the accuracy. Even 
something as minor as disqualifications per season, 
when removed, decreased the accuracy of our 
model by 2%. Therefore, we kept all the non-
repetitive features in our model.  
 
 
 
 
 

4.3 Classifiers 
The classifiers that we considered included: 

• ZeroR: To give us a baseline to compare 
other classifiers, we used ZeroR to predict 
the outcome of the game.  

• J48: We chose to use to use j48 because it 
was an intuitive way to interpret the 
features and understand the calculated 
relationships that result from a decision 
tree. 

• Logistic Regression: Another useful 
classifier model that is effective when 
working with numeric attributes and 
understanding the relationships between 
them. 

• Other classifier models implemented in 
Weka 
 

4.4 Testing and Evaluation   
To test the accuracy of our models, we used the 
games from the 2012-2013 March Madness 
tournament and generated test instances following 
the same method as with the training examples. 
 
Once we had our training examples and test data, 
we conducted our experiment as follows: 

1. Establish a baseline accuracy using the 
ZeroR classifier model in Weka 

2. Explore other classifier models in Weka and 
evaluate their performance 

a. we looked at both the accuracies on 
cross validation (10-fold) and the test 
set  

3. Further refined our features (eliminate 
redundant attributes if applicable) and 
classifier model selection 

5.  Results 
After trying different models, the Naive Bayes 
classifier had the best percentage on 2013 March 
Madness tournament, predicting 71.6% of the 
games correctly. Naive Bayes is an optimal choice 
for our classifier not only because it had the best 
percentage, but because all of our features are 
numeric, the nature of how Naive Bayes is 
calculated synchronizes with our data. Naive Bayes 
relies on the probabilities calculated through the 
mean and standard deviation of a feature.  



 
The problem with decision trees is that with 
numeric values, they tend to overfit our data by 
splitting multiple times on numeric values. 
Therefore, we saw a very high success rate for our 
J48 tree (72%), but a rate that was worse than our 
ZeroR rate on the actual 2013 March Madness 
tournament (55%). 
 

 
Once we chose the Naive Bayes classifier, we 
attempted to use vary the number of features on 
the classifier, in hopes a simpler model would be 
better. Unfortunately, after trying to get rid of 
many different features, we either were left with 
the same accuracy or worse. This is logical though, 
because all of the statistics we recorded are major 
statistics. Even getting rid of number of 
Disqualifications a team gets, what we thought was 
a rare and minor feature in our data, dropped our 
success rate to 70.15%. 
 
 
 
 

 
Figure 2. How our predicted outcomes performed against the actual 2013 tournament. 

 
6.  Conclusion 
Although 71.6% isn’t a bad percentage for 
classifiers, it probably won’t be good enough to 
predict 100% accuracy for a March Madness 
bracket. After filling out the 2013 bracket, we can 
see some flaws in our predictor. For instance, we 
predicted Creighton to beat Duke. This is due to 
the fact that Creighton had very high statistics 
because Creighton’s conference is easier than 
Duke’s. However, in the same bracket we see that 
we correctly picked Wichita (#9) to upset 
Pittsburgh (#8) and Iowa (#10) to upset Notre 
Dame (#7). Most dramatically, we correctly picked 
FGCU (#15) to upset Georgetown (#2). Therefore, 
we can see some fruit in our classifier. 

 
 
7.  Ideas for improvement 
For future work, we should include some type of 
measure for how difficult a conference is to weight 
statistics accordingly. Additionally, if we could 
include player statistics also, this would probably 
create better accuracy, as player matchups in 
basketball are very important.  
 
 
 
 
 
 
 



Appendix A 
 
Full list of features  
 

1. Total Games 
2. Winning Pct 
3. Possessions 
4. Possessions Per 40 minutes 
5. Floor Pct 
6. Efficiency 
7. Field Goal Attempts 
8. Field Goal Pct 
9. Free Throw Attempts 
10. Free Throw Pct 
11. 3-pt Field Goal Attempts 
12. 3-pt Field Goal Pct 
13. Effective Field Goal Pct 
14. True Shooting Pct 
15. Free Throw Rate 
16. Field Goal Point Pct 
17. Free Throw Point Pct 
18. 3-pt Field Goal Point Pct 
19. Points Per Possessions 
20. Points 
21. Points Per Game 
22. Rebound Pct 
23. Total Rebounds 
24. Total Rebounds Per Game 
25. Offensive Reb Pct 
26. Offensive Rebounds 
27. Offensive Rebounds Per Game 
28. Defensive Reb Pct 
29. Defensive Rebounds 
30. Defensive Rebounds Per Game 
31. Team Rebounds 
32. Team Rebounds Per Game 
33. Assist Pct 
34. Assists 
35. Assists Per Game 
36. Assist to Turnover 
37. Steal Pct 
38. Steals 
39. Steals Per Game 
40. Turnover Pct 
41. Turnovers 
42. Turnovers Per Game 
43. Block Pct 
44. Blocks 
45. Blocks Per Game 
46. Fouls 
47. Fouls Per Game 
48. Disqualifications 
49. Outcome 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  


