
Predicting March Madness
Using Machine Learning Techniques

Allen Zeng

Northwestern University
AllenZeng2014@u.northwestern.edu

Rich Chang

Northwestern University
RichardChang2014@u.northwestern.edu

1. Overview

March Madness is a NCAA Division I Basketball
tournament that was founded in 1939 and has been
played annually since. The tournament
traditionally runs from the middle of March to the
end of April and features the top 68 teams from
around the country.

Filling out a March Madness bracket has been
somewhat of an American tradition, with a history
of high offers for anyone who can fill out a perfect
bracket. In 2012, Fox Sports offered $1 million to
anyone who could do it, and for this upcoming
season, Warren Buffett offered $1 billion. Sadly,
there has been no documented case of a perfect
bracket in the history of the tournament.

2. Project Goal
Our goal for this project is to accurately predict a
March Madness bracket for the upcoming 2014
tournament. We will use a number of machine
learning classifier models and attempt to predict
the winning teams by identifying the
characteristics that determine a team’s success in
the tournament.

To construct our bracket, we will ask the following
questions in our experiments:

• Which are the most important statistics
about a team that determine its likelihood to
win a game?

• Which classifiers will give us a model with
stronger performance - decision tree, logistic
regression, or another classifier?

• How accurately can we predict the outcome
of a game given each team’s season
statistics? Is it as least better than chance
(50%)?

3. Data
Working with sports data is both a blessing and a
curse - there are a countless number of websites
available that provide data but it is not always
provided in a structured format that fits the user’s
specific needs. We surveyed a number of available
sports data sites but we ultimately opted for
Statsheet because the data was provided in a
relatively structured format that made it
straightforward to scrape.

Our dataset consists of information from
Statsheet’s NCAAB (http://statsheet.com/mcb) for
the 2012-2013 season. The set contains all 351
NCAAB D1 teams, their conference schedule
games (a total of 3207 games), and their season
long statistics (54 for each team). The team statistics
are a combination of binary, continuous and
discrete variables that we are using as a feature set
to represent each individual team. A sample of the
types of features that we collected includes, but is
not limited to: winning pct, possessions, floor pct,
steals, turnovers, blocks, and fouls.

4. Approach
In order to conduct our experiments, we needed to
create instance representing the games that
occurred from the data that we collected for the
2012-2013 season.

4.1 Creating Training Instances
To create an instance, we looked at our game data,
which was formatted in the following format:

• home team, away team, outcome for the
home game

•
Using this information, we queried our data to find
the season statistics for each team, giving us a set of
numeric values describing each team. Next in order
to model the actual game, we took the difference of

the stats between the respective teams (home team
stats - away team stats) and appended the outcome
of the game to it. This gave us a numerical
representation of a game that we could use as a
training example to feed into a classifier model.

Figure 1. Outline of how we constructed our training
examples (not all of our features are included in this

diagram).

Our rationale behind modeling a game in this
format was because it was a reasonable (and
simple) way to represent a matchup between two
teams - it is the difference in team skill (which we
are representing as their season statistics) that
ultimately decides which team wins in a basketball
game. Intuitively, modeling a game in this way
makes sense - a team that has a consistently higher
average points per game is more likely to defeat a
team that has a much lower average points per
game.

4.2 Features

In Appendix A, we’ve included the full list of
features. In this list, one can see that there are many
repetitive statistics. For example, one can calculate
the 3-pt percentage if the amount of 3-pt shots
taken and 3-pt shots made are known. In this list of
features, all 3 statistics are known, so we removed
the 3-pt shots made. This occurs for many other
statistics for field goal shooting, free throw
shootings, and more.

In addition, we did try to “prune” our model by
removing features and seeing if it increased the
accuracy. However, we could not find a single
feature that actually increased the accuracy. Even
something as minor as disqualifications per season,
when removed, decreased the accuracy of our
model by 2%. Therefore, we kept all the non-
repetitive features in our model.

4.3 Classifiers
The classifiers that we considered included:

• ZeroR: To give us a baseline to compare
other classifiers, we used ZeroR to predict
the outcome of the game.

• J48: We chose to use to use j48 because it
was an intuitive way to interpret the
features and understand the calculated
relationships that result from a decision
tree.

• Logistic Regression: Another useful
classifier model that is effective when
working with numeric attributes and
understanding the relationships between
them.

• Other classifier models implemented in
Weka

4.4 Testing and Evaluation
To test the accuracy of our models, we used the
games from the 2012-2013 March Madness
tournament and generated test instances following
the same method as with the training examples.

Once we had our training examples and test data,
we conducted our experiment as follows:

1. Establish a baseline accuracy using the
ZeroR classifier model in Weka

2. Explore other classifier models in Weka and
evaluate their performance

a. we looked at both the accuracies on
cross validation (10-fold) and the test
set

3. Further refined our features (eliminate
redundant attributes if applicable) and
classifier model selection

5. Results
After trying different models, the Naive Bayes
classifier had the best percentage on 2013 March
Madness tournament, predicting 71.6% of the
games correctly. Naive Bayes is an optimal choice
for our classifier not only because it had the best
percentage, but because all of our features are
numeric, the nature of how Naive Bayes is
calculated synchronizes with our data. Naive Bayes
relies on the probabilities calculated through the
mean and standard deviation of a feature.

The problem with decision trees is that with
numeric values, they tend to overfit our data by
splitting multiple times on numeric values.
Therefore, we saw a very high success rate for our
J48 tree (72%), but a rate that was worse than our
ZeroR rate on the actual 2013 March Madness
tournament (55%).

Once we chose the Naive Bayes classifier, we
attempted to use vary the number of features on
the classifier, in hopes a simpler model would be
better. Unfortunately, after trying to get rid of
many different features, we either were left with
the same accuracy or worse. This is logical though,
because all of the statistics we recorded are major
statistics. Even getting rid of number of
Disqualifications a team gets, what we thought was
a rare and minor feature in our data, dropped our
success rate to 70.15%.

Figure 2. How our predicted outcomes performed against the actual 2013 tournament.

6. Conclusion
Although 71.6% isn’t a bad percentage for
classifiers, it probably won’t be good enough to
predict 100% accuracy for a March Madness
bracket. After filling out the 2013 bracket, we can
see some flaws in our predictor. For instance, we
predicted Creighton to beat Duke. This is due to
the fact that Creighton had very high statistics
because Creighton’s conference is easier than
Duke’s. However, in the same bracket we see that
we correctly picked Wichita (#9) to upset
Pittsburgh (#8) and Iowa (#10) to upset Notre
Dame (#7). Most dramatically, we correctly picked
FGCU (#15) to upset Georgetown (#2). Therefore,
we can see some fruit in our classifier.

7. Ideas for improvement
For future work, we should include some type of
measure for how difficult a conference is to weight
statistics accordingly. Additionally, if we could
include player statistics also, this would probably
create better accuracy, as player matchups in
basketball are very important.

Appendix A

Full list of features

1. Total Games
2. Winning Pct
3. Possessions
4. Possessions Per 40 minutes
5. Floor Pct
6. Efficiency
7. Field Goal Attempts
8. Field Goal Pct
9. Free Throw Attempts
10. Free Throw Pct
11. 3-pt Field Goal Attempts
12. 3-pt Field Goal Pct
13. Effective Field Goal Pct
14. True Shooting Pct
15. Free Throw Rate
16. Field Goal Point Pct
17. Free Throw Point Pct
18. 3-pt Field Goal Point Pct
19. Points Per Possessions
20. Points
21. Points Per Game
22. Rebound Pct
23. Total Rebounds
24. Total Rebounds Per Game
25. Offensive Reb Pct
26. Offensive Rebounds
27. Offensive Rebounds Per Game
28. Defensive Reb Pct
29. Defensive Rebounds
30. Defensive Rebounds Per Game
31. Team Rebounds
32. Team Rebounds Per Game
33. Assist Pct
34. Assists
35. Assists Per Game
36. Assist to Turnover
37. Steal Pct
38. Steals
39. Steals Per Game
40. Turnover Pct
41. Turnovers
42. Turnovers Per Game
43. Block Pct
44. Blocks
45. Blocks Per Game
46. Fouls
47. Fouls Per Game
48. Disqualifications
49. Outcome

